Plate Tectonics and Ocean Basins

Pictured: a rift valley in Iceland (that’s a bus in the red circle).

Iceland is where the Mid-Atlantic Ridge can be found on land.
Outline for Today

• Activity #2:

 On the sign-in sheet, please write:
 1) Your full name
 2) Your example of a plate boundary (location & type)

• How (and where) plate boundaries create continents & oceans (Chapter 3)

• Continental margins, basins, ridges (Chapter 4)
Learning Goals: Earth Structure & Plate Tectonics

- Earth’s layers are arranged by density.
- Land exists because continents float (why?).
- The Earth’s surface is fragile and is broken into “plates” that are like tiles on a floor. Plates move as the layer below them moves.
- The collision of plates causes formation of continents and oceans. (We’ll talk about this on 1/25)
- Several lines of evidence support the theory of plate tectonics.
Learning Goals: Ocean Basins

• Tectonic forces shape the seabed.

• The ocean floor is divided into
 - continental margins (usually granite) and
 - deep-ocean basins (usually basalt)

• The mid-ocean ridge is perhaps Earth’s most prominent feature, but basin floor is the most common.

• Most of the ocean’s water circulates through the hot oceanic crust of the ridges, every 10 million years.
Learning Goals: Ocean Basins

- Tectonic forces shape the seabed.

- The ocean floor is divided into
 - continental margins (usually granite) and
 - deep-ocean basins (usually basalt)

- The mid-ocean ridge is perhaps Earth’s most prominent feature, but basin floor is the most common.

- Most of the ocean’s water circulates through the hot oceanic crust of the ridges, every 10 million years.
Temperature increases as you go deeper, but PRESSURE increases more. There is so much pressure in the inner core that the iron and nickel cannot go into liquid form. The composition of the inner and outer cores is similar.

Inner Core – Solid Iron & Nickel
Why is it solid??
PRESSURE

Outer Core – Liquid Iron & Nickel

Mantle – Silicon & Oxygen

Crust - Solid basalt or granite. Oxygen, Silicon, Aluminum
Earthquakes as Evidence

• Most large earthquakes occur at subduction zones.
• Earthquake activity mirrors tectonic plate boundaries.
Global Plate Boundaries

[Map of global plate boundaries with labels for each plate and boundaries]
For today, 1/25:

1) Choose one type of plate boundary that you find most interesting (or confusing):
 a) Divergent
 b) Convergent
 c) Transform

2) Write down the name of one example of the plate boundary you have chosen.

3) (Optional) Bring an image (printed or electronic) of your example.

Recommended source: http://mapmaker.education.nationalgeographic.com/
Your examples of plate boundaries:

<table>
<thead>
<tr>
<th>Divergent</th>
<th>Convergent</th>
<th>Transform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Sea</td>
<td>Pacific Ring of Fire</td>
<td>Pacific Ring of Fire</td>
</tr>
<tr>
<td>Mid-Atlantic Ridge</td>
<td>Washington/Oregon</td>
<td>San Andreas Fault</td>
</tr>
<tr>
<td>East Africa Rift Valley-II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>East Pacific Rise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galapagos Rise</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Denser material from below is forced up.

Continents are forced apart at spreading center.

Denser material sinks, creating depression (rift valley).
Examples of Spreading Centers

- **East Pacific Rise**
 - Fast-spreading
 - Gentle slopes

- **Mid-Atlantic Ridge**
 - Slow-spreading
 - Steep slopes

- **Southwest India**
 - Deep rift valley
 - Widely scattered volcanoes

Big-picture point:
At divergent boundaries, spreading centers are moving at different rates.
Age of Ocean Floor

- First determined by deep-sea drilling in the late 1960s
- Radiometric dating of ocean rocks showed a symmetric pattern of age distribution around mid-ocean ridges.
- Another piece of evidence that supports the theory of plate tectonics.
Convergent Boundary Features

• Plates move toward each other
• Oceanic crust destroyed
 – Ocean trench
 – Volcanic arc
• Deep focus earthquakes
 – Great forces involved
 – Mineral structure changes associated
Types of Convergent Boundaries

- Oceanic-Continental Convergence
 - Ocean plate is subducted
 - Continental arcs generated
 - Explosive volcanic eruptions

Also:
- Oceanic-oceanic: volcanic arcs AND
- Continental-continental: Himalayas from India-Asia collision
Trenches – arc-shaped depression caused by subduction.

Island arcs – region of islands found near trenches
Transform Boundary Features

• Transform faults occur between mid-ocean ridge segments.

• Shallow but strong earthquakes happen here.
Examples of Plate Boundaries

<table>
<thead>
<tr>
<th>Plate boundary</th>
<th>Plate movement</th>
<th>Crust types</th>
<th>Sea floor created or destroyed?</th>
<th>Tectonic process</th>
<th>Sea floor feature(s)</th>
<th>Geographic examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divergent plate boundaries</td>
<td>Apart ← →</td>
<td>Oceanic-oceanic</td>
<td>New sea floor is created</td>
<td>Sea floor spreading</td>
<td>Mid-ocean ridge; volcanoes; young lava flows</td>
<td>Mid-Atlantic Ridge, East Pacific Rise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continental-continental</td>
<td>As a continent splits apart, new sea floor is created</td>
<td>Continental rifting</td>
<td>Rift valley; volcanoes; young lava flows</td>
<td>East Africa Rift Valleys, Red Sea, Gulf of California</td>
</tr>
<tr>
<td>Convergent plate boundaries</td>
<td>Together → ←</td>
<td>Oceanic-continental</td>
<td>Old sea floor is destroyed</td>
<td>Subduction</td>
<td>Trench; volcanic arc on land</td>
<td>Peru–Chile Trench, Andes Mountains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oceanic-oceanic</td>
<td>Old sea floor is destroyed</td>
<td>Subduction</td>
<td>Trench; volcanic arc as islands</td>
<td>Mariana Trench, Aleutian Islands</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continental-continental</td>
<td>N/A</td>
<td>Collision</td>
<td>Tall mountains</td>
<td>Himalaya Mountains, Alps</td>
</tr>
<tr>
<td>Transform plate boundaries</td>
<td>Past each other → ←</td>
<td>Oceanic</td>
<td>N/A</td>
<td>Transform faulting</td>
<td>Fault</td>
<td>Mendocino Fault, Eltanin Fault (between mid-ocean ridges)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continental</td>
<td>N/A</td>
<td>Transform Faulting</td>
<td>Fault</td>
<td>San Andreas Fault, Alpine Fault (New Zealand)</td>
</tr>
</tbody>
</table>

From “Essentials of Oceanography” – your textbook has a similar table (3.1)
Hotspots occur within single plates.
How are hotspots created?

a) A plume of hot, buoyant material breaks off from the deep mantle or core.

b) The plume rises rapidly and elevates Earth’s surface.

c) The plume head melts and creates a hotspot volcano.
 The plume is now within a plate.

d) The plate moves, and carries with it the hotspot volcano.
 As a volcano becomes separated from the magma source, it becomes inactive. Island arcs are formed.
Hawaiian Islands were formed over a hotspot, as the plate moved.
Other “intraplate” features

- **Seamount**
 - Rounded top
- **Tablemount or guyot (“guy-oh”)**
 - Flattened top
- Subsidence of flanks of mid-ocean ridge
- Wave erosion may flatten seamount

“intraplate” means within one plate, NOT at a plate boundary
Coral Reef Development

Animation:
http://oceanservice.noaa.gov/education/kits/corals/media/supp_coral04a.html

* recall: Charles Darwin proposed this theory before seeing these types of coral reefs.
Ocean Basins (Chapter 4)

- **ARCTIC OCEAN**: Smallest and shallowest ocean
- **ATLANTIC OCEAN**: Second-largest ocean
- **PACIFIC OCEAN**: World's largest and deepest ocean
- **INDIAN OCEAN**: Exists mostly in the Southern Hemisphere
- **SOUTHERN OCEAN**: Defined by Antarctic Convergence and surrounds Antarctica
Learning Goals: Ocean Basins

- Tectonic forces shape the seabed.
- The ocean floor is divided into
 - continental margins (usually granite) and
 - deep-ocean basins (usually basalt)
- The mid-ocean ridge is perhaps Earth’s most prominent feature, but basin floor is the most common.
- Most of the ocean’s water circulates through the hot oceanic crust of the ridges, every 10 million years.
Three major categories: margin, basin, ridge
How is (was) ocean depth determined?

The HMS *Challenger* measured ocean depth by dropping weights off ships.
Echo sounding is much quicker.

Speed of sound \(\sim 5000 \text{ ft/s} \)

What is depth if it takes 4 seconds to return?

10,000 feet
Echo Sounding Record

- Continental shelf
- Deep scattering layer
- Continental slope
Satellites also detect ocean depths.
How do satellites work to measure bathymetry?

Differences in sea-surface height above a seabed feature are caused by the extra gravitational attraction of the feature, which “pulls” water toward it from the sides and forms a mound of water over itself.

OR: Bottom features cause bumps on water.
Three major categories: margin, basin, ridge
Continental Margins

• **Passive**
 – Not close to any plate boundary
 – No major tectonic activity
 – East coast of United States

• **Active**
 – Associated with convergent or transform plate boundaries
 – Much tectonic activity
Offshore from Florida, there is a very steep (and unusual) continental slope.

Florida is on a passive margin.

Continental slopes are where deep ocean basins begin.
Active continental margins (such as this one off central California) are more complex.

Stopped here – start again with slide 35 and then go into abyssal plains and hydrothermal vents
The east coast of Florida would be considered a(n)

a) active margin
b) passive margin
c) transform margin
d) turbidity margin
The east coast of Florida would be considered an:

a) active margin
b) passive margin
c) transform margin
d) turbidity margin